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SUMMARY 

 

GNSS measurements are widely used for the monitoring of several structures’ deformations 

such as dams, bridges, high-rise buildings as well as landslides and earth crustal movements. 

In most cases the use of GNSS receivers is more convenient as it ensures continuous 

measurements and provides unmanned observations, long or short baselines measurement 

without visibility between the points. Moreover the accuracy of the static relative positioning 

reaches the sub-cm level.  

According to the usual procedure both horizontal and vertical change vectors of each point’s 

position are calculated in order to examine whether they should be considered as 

displacements or they are within the noise of the measurements.  

As many commercial GNSS software packages don’t provide the full variance – covariance 

(VCV) matrix as an output, there is often a miscalculation of the absolute and relative error 

ellipses or ellipsoids for any confidence level. Moreover the baselines’ solution usually 

provides unrealistically optimistic standard errors. Thus it is often ignored or empirically 

scaled. The right weight estimation is needed in order to produce an objective VCV matrix 

from the network adjustment. 

This work presents a complete, reliable processing methodology for 3d monitoring by using 

GNSS measurements. This processing methodology allows the use of the initial baselines 

measurements and leads to analytical results according to the least squares method and the 

law of propagation of errors.  

Also the paper uses a specific technique for the preferred definition of the weights in order to 

be used for the unequal weight adjustment. 

The network adjustment is carried out in the geocentric reference system by using linear 

equations and the indirect observations method. The full objective VCV matrix of the network 

is provided. The appropriate full rotation matrices are used in order to transform the 

displacement vectors as well as their variances and covariances in a local oriented plane 

projection in order to be more perceptible and useful. 

Finally, the limitations of the proposed procedure are represented by the calculation of the 

difference to the error ellipses when the full VCV matrix is used.  
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1. Introduction 
 

3D monitoring using GNSS receivers is today widely used due to the convenience and the 

advantages that GNSS receivers provide. The 3D monitoring of dams (Lima et al, 2006), 

landslides (Gili et al, 2000), bridges (Barnes et al, 2003) or wide areas have some 

particularities that impose the use of GNSS measurements against terrestrial ones.  

The use of GNSS receivers is promoted for such applications, as it is more convenient, it 

reduces the staff needed, it has easier instrument setting, it doesn’t need visibility between the 

points and the measurement accuracy reaches the sub-cm level that is required for such 

applications.  

The accurate determination of the measurements noise and the error ellipses of the control 

points are indispensable in order to prove displacements for a selected confidence level. Two 

main parameters are involved in the above calculations, the weight of each measurement and 

the variance –covariance (VCV) matrix which resulted from the adjustment. 

For 3D monitoring, a network of control points was established in the area of interest. 

Measurement campaigns are carried out in selected time intervals according to the evolution 

of the phenomenon. The comparison of the calculated coordinates of each campaign provides 

the control points’ displacement through time.  

For each campaign (I, II…) the measurement of all the formed baselines is carried out. The 

relative static positioning method is used applying independent determination for each one. 

Only non-trivial baselines are used for the adjustment in order to ensure different conditions 

and to avoid bias at the calculations. Figure 1 presents a network consisting of five points, 

where 10 baselines are formed. By using two receivers the base lines should be measured 

sequentially 1-2,1-3,1-4,1-5,5-2,5-3,5-4,4-2,4-3,3-2. 1 2

4
5

1B
3B2

3B6B 9B7B 8BB105B 4B
 

Figure 1: A typical network  

 

The solution of each baseline provides the components ij∆Χ , ij∆Υ , ij∆Ζ  in the Cartesian 

geocentric reference system between the occupation points i and j (Wells et al, 1986). The 
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standard deviations, which are essential for the network adjustment and provided by baseline 

solution usually are unrealistically optimistic. Thus an objective weight definition is needed. 

Another significant problem emerges from the use of commercial adjustment software, as 

some of them do not provide the full VCV matrix as an output.  

According to the proposed processing methodology firstly a reliable estimation of the weights 

either by three preliminary separate adjustments or by using a fast empirical estimation under 

some assumptions is implemented. 

So, linear equations are formed and the unknown geocentric coordinates X, Y and Z are 

calculated by a least squares’ adjustment. Thus the full VCV matrix is provided for each 

campaign. The differences of the coordinates ΙΙΙΧ ,

iδ , ΙΙΙΥ ,

iδ , ΙΙΙΖ ,

iδ between successive campaigns 

are calculated.  

A detailed rotation matrix is used for the transformation of ΙΙΙΧ ,

iδ , ΙΙΙΥ ,

iδ , ΙΙΙΖ ,

iδ  in a local 

projection plane ΙΙΙ,
iδE , ΙΙΙ,

iδN , ΙΙΙ ,
iδUp , in order to be easily comprehensible. After that the full 

VCV matrix UpN,δE,V is calculated according to the law of propagation of errors by using the 

full VCV matrix of the displacement ZY,δX,V . 

Finally, by using the full VCV matrix UpN,δE,V  the error ellipses or ellipsoids of the control 

points are calculated for the detection of the point’s displacement. If covariances are not used 

for the error ellipse calculation, significant errors and inverse results are possible. In this case 

there is the possibility of a wrong decision about whether a change vector represents 

displacement or lies within the measurement noise. 

For all the methodology’s calculations the use of Excel or Matlab software is sufficient. 

 

2. Weights estimation 

 

During a baseline measurement, redundant measurements are collected according to the set 

processing interval time. Thus usually the calculated uncertainties of baseline components are 

overestimated, sometimes to the sub-millimetre level. Before the network adjustment, an 

objective estimation of the achieved uncertainties must be done, in order to form the right 

weight matrix.  

Considering that the standard deviations of Χi, Yi and Zi for each point i may be different 

from the other and without other assumptions the following procedure may be applied. 

In order to calculate the errors for each component iΧ , iΥ  and iΖ independently, a preliminary 

adjustment could be applied according to either the method of indirect observations or the 

method of condition equations by using the least squares method. 

With the indirect observations method three independent equations systems are formed 

separately for iΧ , iΥ and iΖ . The number of equations of each system is equal to the 

measured baselines. The equations have the following form: 

 
ijij Χ−Χ=∆Χ ,  ijij Υ−Υ=∆Υ  ,   ijij Ζ−Ζ=∆Ζ  (1) 

The measured ij∆Χ , ij∆Υ , ij∆Ζ  are used  with  unknowns iΧ  , iΥ  and iΖ  of the network points 

accordingly. 

An equal weight adjustment of the above three mentioned equation systems is being 

performed. Three different VCV matrices XV , YV , ZV  are produced independently. The 
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objective errors of the unknown components 
iΧ

e ,
iYe ,

iZe for each point i of the network is 

presented by  the root of the variance for each one in XV , YV , ZV  accordingly.  

Also by following the linear condition equations method three independent adjustments could 

be produced. The condition equations are formed by network’s loops closure by using the 

measured ij∆Χ , ijY∆ , ijZ∆ , as follows: 

 0kijkij =∆Χ+∆Χ+∆Χ ,  0∆Y∆Y∆Y kijkij =++ , 0∆Z∆Z∆Z kijkij =++  (2) 

It’s obvious that practically the loops have always a misclosure (mc≠0) 

The number of equations in every system is equal to the number of the unary loops of the 

network. Each loop includes three of the network’s points. For the presented network in figure 

1, ten unary loops are formed. 

From each adjustment, a VCV matrix is produced. From this matrix, with the appropriate 

transformation the root of the variances for iΧ , iΥ and iΖ  come out. This may be considered, 

as previously mentioned, an objective estimation of the errors 
iΧ

e ,
iYe , 

iZe for each point i of 

the network. 

On the other hand an empirical estimation, or the errors 
iΧ

e ,
iYe ,

iZe may be applied. For the 

unary loops of the network (L), the misclosure in the X, Y and Z is being calculated 

(
Xloopmc ,

Yloopmc ,
Zloopmc ). Every loop’s closure must be equal to zero according to the 

condition equation (2). The misclosure (mc) is the error, which the loop contains for three 

participating baselines. So a decent estimation of this error for each component is given by the 

following equation.   

 

3

mc
e x

ij

loop

∆Χ ±=      
3

mc
e Y

ij

loop

∆Y ±=       
3

mc
e Z

ij

loop

∆Z ±=          (3) 

Then the mean errors
m∆Χe , 

m∆Ye , 
m∆Ze  of the  baselines’ components determination are 

calculated as follows. 

 

L

e

e

L

1t

∆Χ

∆Χ

ij

m

∑
=±=      

L

e

e

L

1t

∆Y

∆Y

ij

m

∑
=±=      

L

e

e

L

1t

∆Z

∆Z

ij

m

∑
=±=  (4) 

Considering that for each baseline i, j the following equations are valid  

 
2

Χ

2

Χ∆Χ∆Χ jimij
eeee +±==    2

Y

2

Y∆Y∆Y jimij
eeee +±==      2

Z

2

Z∆Z∆Z jimij
eeee +±==  (5) 

Where 
ji ΧΧ ee = , 

ji YY ee = , 
ji ZZ ee =   

 
then     

2

e
e ij

i

∆Χ

Χ ±=      
2

e
e ij

i

∆Y

Y ±=        
2

e
e ij

i

∆Z

Z ±=  (6) 

The above procedure provides an objective estimation of the errors
iΧ

e ,
iYe ,

iZe , compared to 

the unrealistically optimistic ones which comes out from the baselines’ solution. Thus, by 

using these errors the weight matrix P is calculated in order to be used in the network’s 

unequal weight adjustment. 

3. The adjustment 

 



TS6 Engineering Surveys 

George Pantazis, Greece 

Α complete processing methodology for 3D monitoring using GNSS receivers 

 

FIG Working Week 2015 

From the Wisdom of the Ages to the Challenges of the Modern World 

Sofia, Bulgaria, 17–21 May 2015 

5/13 

Each baseline between the points i and j gives 3 linear equations, which have the form of 

equation (1). A total adjustment is applied by using all equations together and the correct 

weight matrix.   

Thus according to the indirect observations method the following system of regular equations 

is formed  

 δlΡ Α x Α)(Α ΤT ⋅⋅=⋅⋅Ρ⋅  (7) 

Where  

m   the number of the measured baselines  

 n   the number of the network’s points 

Α   the matrix ( 3m x 3(n-1))  of the coefficients of the unknowns  

δl   one-columned matrix (3m x 1) of the results   

x    one-columned matrix (3(n-1) x 1)  of the unknowns X ,Y and Z ,for each network’s point  

P   the weight matrix (3m x 3m) 

The solution of the system, which is formed in equation 7, is carried out according to equation 

8. The coordinates ΙΧi , ΙΥi and ΙΖ i  of the unknown points of the network for the I measurement 

campaign are calculated, considering one point as fixed. 

 δlΡ ΑNδlΡ ΑA)(A x Τ1Τ-1T ⋅⋅⋅=⋅⋅⋅⋅Ρ⋅= −)
 (8) 

Also the a-posteriori rms error is given by the equation 9 as well as the variance – covariance 

matrix I

ZY,X,V  ( ( ) ( )1n31n3 −⋅×−⋅ ) of coordinates is given by the equation10. Similar results are 

acquired from each measurement campaign I,II,….  
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Where  ×   are the positions of the non zero elements which are the variances and the co-

variances of the correlated unknowns according to equation (1). The rest of the elements are 

zero as referred to the uncorrelated components as Xi and Yi or Xi and Zi or Yi and Zi  etc 

under the assumption that baseline components are independent.  
 

3.1 Absolute displacements calculation 

 

The absolute position changes ΙΙΙΧ ,

iδ , ΙΙΙΥ ,

iδ , ΙΙΙΖ ,

iδ of each network’s point i between two 

sequential measurement campaigns (I and II) are calculated according to the following 
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equations: 

 ΙΙΙΙΙΙ Χ−Χ=Χ ii

,

iδ   ΙΙΙΙΙΙ Υ−Υ=Υ ii

,

iδ    ΙΙΙΙΙΙ Ζ−Ζ=Ζ ii

,

iδ  (11) 

Also a one-columned matrix ( ) 11n3 ×− , describes them.  
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(12) 

The variances and covariances of ΙΙΙΧ ,

iδ , ΙΙΙ ,
iδY , ΙΙΙ,

iδZ are presented on the VCV matrix 

ZY,δX,V , which is formed as the sum of the matrices I

ZY,X,V & II

ZY,X,V  of the sequential 

measurement campaigns I and II, namely  

     II

ZY,X,

I

ZY,X,ZY,δX, VVV +=  (13) 

The changes ΙΙΙΧ ,

iδ , ΙΙΙΥ ,

iδ , ΙΙΙΖ ,

iδ of each point i must be  converted to an oriented local plane 

projection , δEasti , δNorthi and δUpi (
ΙΙΙ,

iδE , ΙΙΙ,
iδN , ΙΙΙ ,

iδUp ) in order to be more comprehensible 

and to define their directions and their trends in relation to  the earth’s surface. 

A rotation matrix Si for each point i is calculated according to equation (14) (Bomford, 1980), 

(Mueller, 1969), (Soler ,1998). 
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Where φi, λi are the geodetic coordinates of each point of the network, which have been 

calculated by the GNSS receivers solution. Otherwise they could be calculated according to 

equation (15) (Heiskanen, Moritz, 1967) 
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Where Xi, Yi and Zi are the Cartesian geocentric coordinates of the specific point 

i

22
i

φsine1

a
Ν

−
= , 2e  = 0.00669438002290,  6378137ma =  

So, the total rotation matrix SALL for the n-1 unknown points of the network is as follows: 
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Thus the position changes of each point i ( ΙΙΙ,
iδE , ΙΙΙ,

iδN , ΙΙΙ ,
iδUp ) in a local projection plan are 

calculated according to the following equation:  
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The VCV matrix UpN,δE,V for the components ΙΙΙ,
iδE , ΙΙΙ,

iδN , ΙΙΙ ,
iδUp  are calculated according to 

the law of propagation of errors by using the appropriate J matrix as 

     T

ZY,δX,UpN,δE, JVJV ⋅⋅=  (16) 

Where ZY,δX,V  comes from equation 13 and J matrix is formed by taking partial derivatives of 

the previous equation with respect to ΙΙΙΧ ,

iδ , ΙΙΙΥ ,

iδ , ΙΙΙΖ ,

iδ as follows 
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It is remarkable that the matrix J is identical with the matrix SALL as the coefficients of 
ΙΙΙΧ ,

iδ , ΙΙΙ ,
iδY , III,

iδZ remain invariant. 

Continuously the change vector III,

iδr  and its bearing III,

ib , with respect to north, of each point i 
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are calculated as follows (Agatza, 2005), (Hoover, 1984): 

  2III,

i

2III,

i

III,

i )δN()(δEδr +=  (17) 

                                                       

III,

i

III,

iIII,

i
δΝ

δΕ
arctanb =  (18) 

For vertical displacement detection, the III,

iδUp  of each point i is compared with the 

III,
iδUp

σ multiplied by z ( zσ III,
iδUp

⋅ ) for the selected confidence level according to the student (t) 

distribution. (For confidence levels 90%, 95% and 99% the values of the component z are 

1.645, 1.96, 2.576 accordingly). If zσδUp III,
iδUp

III,

i ⋅<  then there is no vertical displacement of 

the point i, otherwise point i has a vertical displacement.  

The horizontal displacements could be checked by applying a general one –dimension check, 

without taking into consideration the vector’s bearing. The change vector III,

iδr , is compared 

respectively to each one of III,
iδE

σ , III,
iδN

σ , whose outcome by the matrix
UpN,E,δ

V , multiplied by the 

z component for the selected confidence level. If zσδr III,
iδE

III,

i ⋅<  and zσδr III,
iδN

III,

i ⋅<  then there 

is no horizontal displacement of the point i .The apparent III,

iδr  is within the noise of the 

measurements. Also if λσδr III,
iδE

III,

i ⋅>  and λσδr III,
iδN

III,

i ⋅>  then there is horizontal 

displacement of the point i. If the previous inequalities aren’t valid then the full check by the 

ellipse drawing must be applied. 

For the full check procedure the absolute error ellipse is drawn for each point i for a specific 

confidence level and the displacement vector of each point is over designed. 

The major and the minor semi-axes of the error ellipse for the absolute position change of a 

point i are given by the equations (19), (20) accordingly:  

                         

2

σ4)σσ(σσ
III,

u

2
III,

i
N

III,
i

δE

22

III,
i

δN

2

III,
i

δE

2

III,
i

δN

2

III,
i

δE

i
σ

⋅+−++

=  
(19) 

                                                       

2

σ4)σσ(σσ
III,

v

2
III,

i
N

III,
i

δE

22

III,
i

δN

2

III,
i

δE

2

III,
i

δN

2

III,
i

δE

i
σ

⋅+−−+

=  
(20) 

The rotation angle θi of the major axis of the error ellipse, which measures clockwise from the 

north axis like the bearing, is given by the equation:   

                                                       

2
III,

i
δE

2
III,

i
δN

III,
i

N
III,

i
δE

σσ

σ2
III,

itan2θ
−

=  (21) 

The ellipse’s axes should be multiplied by the component λ for the selected confidence level 

according to the chi-squared distribution (for confidence levels 90%, 95% and 99% the values 

of the component λ are 2.146, 2.447, 3.035 accordingly). If the displacement’s vector exceeds 

the bounds of the ellipse then a real displacement occurred otherwise the change is within the 

noise of the measurements. 

Finally, a total approach of the absolute displacement’s check could be done by the 

calculation of the error ellipsoid’s axes for each point (Potter, 1962). The eigenvalues λ1, λ2, 

λ3 and the respective eigenvectors are calculated by using the VCV matrix UpN,δE,V . The 
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eigenvectors are defined as the positioning vectors of the ellipsoid axes u, v, w, namely the 

rotation of the ellipsoid in relation to the reference system as the eigenvalues are defined as 

the magnitude of the semi axes.  

                                                       2

u1 σλ = , 
2

v2 σλ = , 
2

w3 σλ =  (22) 

Figure 2 illustrates the ellipsoid components. 

The vector III,

iδR  and its spatial directions ci, di, fi of the absolute displacement of the point i 

are calculated as follows (Agatza , 2005), (Hoover, 1984): 

  2III,

i

2III,

i

2III,

i

III,

i )(δUp)δN()(δEδR ++=  (23) 

                                            

III,

i

III,

i
i
δR

δN
cosc =                  

III,

i

III,

i
i
δR

δE
cosd =                 

III,

i

III,

i
i

δR

δUp
cosf =  (24) 

σw

σw

σu

u σu

σ
v

σ
v

positioning vectors

v

w

 
 

Figure  2.  The error ellipsoid’s components 

 

By the comparison of the vector III,

iδR to the error ellipsoid of each point i, it is decided if 

there is a displacement or the change is within the noise of the measurements. 

 

3.2 Relative displacements calculation 

 

In order to calculate the relative displacements between two points i and j of the network the 

change’s vectors ΙΙΙ,

ji,
δΕ∆ , ΙΙΙ,

ji,
 ∆δΝ , ΙΙΙ,

ji,
∆δUp between two sequential measurement campaigns 

I and II are calculated by using the equations 25, 26 and 27. 

                                                  ΙΙΙ,ΙΙΙ,I

ij

II

ij

ΙΙΙ,

ijji,
δδ)()(δ Ε−Ε=Ε−Ε−Ε−Ε=Ε∆  (25) 

                                                       ΙΙΙ,ΙΙΙ,Ι

ij

II

ij

ΙΙΙ,

ijji,
δδ)()( ∆δΝ Ν−Ν=Ν−Ν−Ν−Ν=  (26) 

                                                       ΙΙΙ,ΙΙΙ,I

ij

II

ij

ΙΙΙ,

ijji,
δUpδUp)UpUp()UpUp(∆δUp −=−−−=  (27) 

The VCV matrix δUpδN,∆δE,V , of the relative displacement between two points i and j is 

determined by the equation 28:  

         T

RδUp,δN,δERδUpδN,∆δE, JVJV
ji,ji,ji,
⋅⋅=  (28) 
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Where in this case the matrix JR is formed by the partial derivative of the equations 25, 26, 27, 

with respect to ΙΙΙ,
iδE , ΙΙΙ,

iδN , ΙΙΙ ,
iδUp ΙΙΙ ,

jδE , ΙΙΙ ,
jδN , ΙΙΙ,

jδUp as follows  

















−

−

−

=

100100

010010

001001

JR  

The VCV sub-matrix 
ji,ji,ji, Up,N,δEV  (3x3) is formed for both points i and j by choosing the 

appropriate elements from the matrix UpN,δE,V (eq. 16). 

The relative change vectors ΙΙΙ,

ji,
∆δr its bearing  

III,

ib  the major and the minor semi-axes of the 

relative error ellipse or ellipsoid as well as their spatial rotation for the relative position’s 

change between two points i,j are given by the corresponding equations to 17, 18,19, 

20,21,22,23 and 24 by replacing ΙΙΙ,

i
δE ,

ΙΙΙ,

i
 δΝ ,

ΙΙΙ,

i
δUp , III,

iδE
σ , III,

iδN
σ , III,

iδUp
σ with ΙΙΙ,

ji,
∆δΕ , 

ΙΙΙ,

ji,
∆δΝ , 

ΙΙΙ,

ji,
∆δUp , III,

ij∆δE
σ , III,

ij∆δN
σ , III,

ij∆δUp
σ  accordingly.  

 

3. Discussion 

 

The influence of the full VCV matrix is very important for the displacement determination as 

it makes a difference not only to the magnitude of the error ellipses’ axes but also to the 

orientation of its main axis. 

The miscalculation of the ellipse could lead to wrong conclusions about the displacements of 

the control point, as the displacement vector may lie accidentally outside or inside the ellipse. 

Figure 3 illustrates an example of the difference in the ellipse calculation when using the full 

VCV matrix or not (only with variances). 

If covariances aren’t used, then according to equation 21 all the error ellipses have the same 

orientation as angle θ will be equal to zero (figure 3). That means that all the ellipses have 

their major axes towards north, which is totally wrong. 

According to equations 19 and 20, if the covariances aren’t used, the ellipse’s major axis is 

equal to III,
iδE

σ and the minor axis is equal to III,
iδN

σ .Thus if III,
iδN

σ > III,
iδE

σ this gives an inverse 

result, completely different from the results when using the full VCV matrix (figure 3a). 

If the size of the change vector III,

iδr  follows the inequality λσδrλσ u

III,

iv ⋅<<⋅ , for the 

selected confidence level, then there is a possibility to come to the wrong conclusion. 

According to the ellipse’s axes size and the orientation, the change vector may lie inside or 

outside the ellipse. Thus, it could be characterised falsely as displacement or not. In figure 3 

the change vector δr  lies inside the red ellipse and outside the green one, thus it presents 

displacement when the full VCV matrix is used. On the contrary it is within the noise of the 

measurements if only the variances are used for the check.  
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Figure 3. The difference in the ellipse calculation when using the full VCV matrix for 

confidence level 95%. 

 

5. Conclusions  

 

The lack of the full VCV matrix as output, the overestimated standard errors of the baselines 

solution as well as the ″black box″ followed procedure, are the main disadvantages of the 

majority of commercial GNSS software when used in the 3D monitoring. The proposed 

processing methodology attempts to rectify this situation. 

In the advantages of the method is registered   the use of the initial measured data ∆Χ, ∆Υ, 

∆Ζ in the geocentric reference system for the adjustment means no transformation 

uncertainties are involved. Also the linear equations, which are formed, release the procedure 

from approximations. 

The weight definition proposed technique avoids unrealistically optimistic standard error 

calculation due to the GNSS ability to collect a plethora of data. Thereby, it ensures the 

reliability of the adjustment as it illustrates the objective achieved standard errors in the 

original captured data. 

The use of specific rotation matrix for each point in order to calculate either the absolute or 

relative displacements according to the law of propagation of error ensure the correctness of 

the results. 

 
iδEσ =±10mm 

iδNσ =±13mm     

iiδΝδEσ =5.023 ·10-5 m2 

 Only 

variances 

Full VCV 

matrix 

uσ  ±10mm ±12mm 

vσ  ±13mm ±11mm 

θ  0° 27° 41′ 

 
iδEσ =±16mm 

iδNσ =±11mm     

iiδΝδEσ =9.093 ·10-6 m2 

 Only 

variances 

Full VCV 

matrix 

uσ  ±16mm ±16mm 

vσ  ±11mm ±11mm 

θ  180° 86° 10′ 
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The full VCV matrix formation allows the accurate error ellipse or error ellipsoid calculation, 

the right evaluation of the displacements and leads to safe conclusion in a way that a point’s 

position change could be characterized as displacement or as noise of the measurements for a 

specific confidence level. 

The comparison of the size and the rotation of the error ellipses which are formed by using the 

full VCV matrix or not prove that there is a strong possibility to extract different conclusions 

for a point’s displacement. The magnitude of the ellipse axes change and its orientation is 

completely different. Both variations are crucial. 

The one-dimension check is an overall quick check; useful in the case of small or large 

position changes. The full check describes better the situation as the displacement vectors are 

drawn in order to illustrate the magnitude and the direction of the movement. The total check 

by the ellipsoid drawing, gives the total replay of the spatial point’s movement. 

Finally, the entire procedure can be carried out in an easy Excel or Matlab environment as 

simple linear equations systems are solved thus no special software development is required. 

The proposed processing methodology has many advantages compared to commercial 

softwares such as the total surveillance of the adjustment’s steps, the objective weights 

definition and the full VCV matrix formation. Thus it is evaluated as efficient and reliable for 

such a trustable and serious activity as 3D monitoring by using GNSS receivers. 
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