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ABSTRACT:  

The Landsat-8 satellite imagery is now highly developed compares  to the former of Landsat projects. Both land and water area are 

possibly mapped using this satellite sensor. Considerable approaches have been made to obtain a more accurate method for extracting 

the information of water area from the images. It is difficult to generate an accurate water quality information from Landsat images by 

using some existing algorithm provided by researchers. Even though, those algorithms have been validated in some water area, but the 

dynamic changes and the specific characteristics of each area make it necessary to get them evaluated and validated over another water 

area. This paper aims to make a new algorithm by correlating the measured and estimated TSS and Chla concentration. We collected 

in-situ remote sensing reflectance, TSS and Chl-a concentration in 9 stations surrounding the Poteran islands as well as Landsat 8 data 

on the same acquisition time of April 22, 2015. The regression model for estimating TSS produced high accuracy with determination 

coefficient (R2), NMAE and RMSE of 0.709;  9.67 %  and 1.705 g/m3 respectively.  Whereas, Chla retrieval algorithm produced R2 of 

0.579; NMAE of 10.40% and RMSE of 51.946 mg/m3. By implementing these algorithms to Landsat 8 image, the estimated water 

quality parameters over Poteran island water ranged from 9.480 to 15.801 g/m3 and 238.546 to 

346.627 mg/m3 for TSS and Chl-a respectively.   

1. INTRODUCTION  

To support the sustainable development of water environment, 

a routine water quality monitoring is a critical requirement. By 

considering the spatial and temporal heterogeneity of water 

bodies, extracting water information by remote sensing 

techniques can be more effective approach than a direct field 

measurement (Liu, Islam, and Gao 2003)  

The estimation of water quality parameters such as the 

concentration of  TSS (Total suspended sediments) and Chl-a 

(Chlorophyll-a) from satellite images is strongly depend on the 

accuracy of atmospheric correction and water quality parameter 

retrievals algorithms (Ruddick, Ovidio, and Rijkeboer 2000; 

Sathyendranath, Prieur, and Morel 1987; Yang et al. 2011; 

Jaelani et al. 2013; Jaelani, Matsushita, et al. 2015).  

Numerous researches have been conducted to develop and 

validate both atmospheric correction algorithm and water 

quality parameter retrieval algorithm. Since the development of 

first algorithm needs a comprehensive study and rigorous 

spectral data over study area (Jaelani, Matsushita, et al. 2015; 

Jaelani et al. 2013), this paper only focus on the second issue.   

Even though, there were many existing water quality parameter 

retrieval algorithms to estimate TSS and Chl-a concentration of 

water from satellite images (Sathyendranath and Platt 1989; 

Gons, Auer, and Effler 2008; Sathyendranath, Prieur, and 

Morel 1987; Nas et al. 2009; Dall’Olmo et al. 2005; Han and 

Jordan 2005; Bhatti et al. 2010; Bailey and Werdell 2006), 

those algorithms have been developed and validated using in 

situ data that was collected in some specific water area. Since, 

the dynamic changes and the specific characteristics of water 

make them unsuitable for another water area such as in 

Indonesia.    

Consequently, The objective of the present study was to develop 

more accurate TSS and Chl-a concentration retrieval algorithms 

for Landsat 8 images at Poteran island water of Indonesia using 

in situ spectra, TSS and Chl-a concentration.    

2.  METHODS  

To develop a new algorithm for TSS and Chl-a concentration 

retrieval algorithms, we collected concurrent in situ and 

Landsat 8 data from Poteran island water on April 22, 2015. 

The water area is located in Sumenep Sub-district, 

southeastearn Madura Island. The in situ data were measured 

and collected at 9 stations as shown in Fig. 1 and Table 1. For 

each station, we collected remote sensing reflectance (Rrs)  

(were measured using a FieldSpec HandHeld spectroradiometer  

in the range of 325–1075 nm at 1 nm intervals), and water 

samples that analyzed in laboratory furthermore. TSS 

concentration was gravimetrically extracted from water sample, 

whereas Chl-a concentration was analyzed using 

spectrophotometer at four wavelengths (750, 663, 645, and 630 

nm).  
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Water   

Station  

Water Quality   Rrs (sr-

1) 
   

Chl-a 

(mg/m3)  
TSS  

(g/m3)  

440 

nm  
480 

nm  
560 

nm  
655 

nm  
865 

nm  

St.1  278  14  0.018  0.019  0.019  0.010  0.003  

St.2  286  13  n/a  n/a  n/a  n/a  n/a  

St.3  298  13  0.043  0.046  0.043  0.024  0.017  

St.4  280  15  0.043  0.045  0.047  0.030  0.019  

St.5  254  14  0.046  0.045  0.042  0.026  0.018  

St.6  386  16  0.063  0.065  0.067  0.057  0.046  

St.7  459  18  0.035  0.039  0.046  0.030  0.012  

St.8  327  17  n/a  n/a  n/a  n/a  n/a  

St.9  332  16  0.016  0.023  0.027  0.015  0.001  

Table 1. Field measurements data  

  

A regression model between every single band (band 1-5) or 

band-ratio of Landsat with in situ TSS and Chl-a concentration 

were assessed to find the most strongest correlation.   

In addition, we collected Landsat 8 image (path/row = 117/65) 

at the same time of field campaign time. This data was used to 

map Chl-a and TSS concentration spatially.  

Since, the Landsat-8 data (level 1T) was stored in digital 

number (DN). It has to be radiometrically converted to the  top-

of-atmosphere radiance (LTOA) by using following formula.  

    (1)  

  

Where:  

   = TOA spectral radiance    

   = Band-specific multiplicative rescaling factor  

   = Digital number        

   = Band-specific additive scaling factor   

After obtaining the radiance value, the next step was 

atmospheric correction that will automatically convert the top-

of-atmosphere radiance value (LTOA) to bottom-ofatmosphere 

reflectance (ρBOA). Then, the BOA Reflectance was converted 

to Reflectance remote-sensing (Rrs) value.   

  

To correct the image from atmospheric effect, we used  

Second  Simulation  of  a  Satellite  Signal  in  the  Solar  

Spectrum-Vector  (6SV) algorithm (Vermote et al. 1997) that 

calculated atmospheric-corrected reflectance for image from 

three parameters as follow:  

   

    (2)  

   (3)  

  

    (4)  

  

Where :   

 acr   = Atmospherically corrected reflectance  

Lλ = TOA Radiance measured data Rrs(λ) = Reflectance 

remote-sensing xa, xb, xc = Atmospherical correction 

parameters coefficient.  

  

The image was now stored in Rrs(λ) value. This value was 

required in order to estimate water quality parameters  (TSS and 

Chl-a concentration) based on the developed water quality 

retrieval algorithms in previous step.   

  

To assess the accuracy of the developed algorithms, a formula 

of RMSE (Root Mean Square Error) and NMAE (Normalized 

Mean Absolute Error) were used.  

 (5)  

  (6)  

 is the value of TSS and chlorophyll-a estimated by using  

the algorithms.  is the value of measured TSS and 

chlorophyll-a.   is the number of samples. The determination 

coefficient (R2 ) was also calculated to assess the relationship 

between estimated and measured concentrations.   

  

3. RESULTS  

3.1 The relationship of the measured and estimated Rrs(λ)  

values  

There were two data collections of the remote sensing 

reflectance (Rrs(λ)) values, one was obtained from field 

measurements (measured-Rrs(λ)) and the second was estimated 

from the Landsat-8 image by performing radiometric 

calibration and atmospheric correction (estimated- Rrs(λ)). 

These data were presented in Fig. 2 and 3.  

  

Figure 1.  Field Measurements Locations at  Poteran Island   
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In Figure 2, even though the measured-Rrs(λ) were measured in 

9 stations, only 7 data have been successfully recorded. The 

data in Station 2 and 8 were missing due to unfavorable weather 

during field campaign.   

  

Figure 2 and 3 showed that the measured-Rrs(λ)  values were 

higher than those of estimated one. The measured-Rrs(λ)  from 

band 1 to 5 ranged between 0.001 to 0.067, while the estimated 

one from 0.002 to 0.039. These fact indicate estimated-Rrs(λ)  

was suffered by inaccurate atmospheric correction (aerosol 

scattering overestimation). The same case was found in 

atmospheric correction by 6SV as reported by  

Jaelani, Setiawan, and Matsushita (2015)  

  

3.2  Developed-Algorithm for Estimating TSS    

The TSS algorithm was developed by correlating in situ TSS 

concentration with in situ measured-Rrs(λ) using regression 

model following the works of Han and Jaelani (Han and Jordan 

2005; Jaelani, Setiawan, et al. 2015). In this algorithm 

development, the in situ TSS concentration was used as 

dependent variable and the measured-Rrs(λ)  for  independent 

variable.  The common model used as follow:   

y = ax+b.   (7)  

The value of x was the modified form of Rrs(λ) (single band or 

band-ratio), whereas the y value was the TSS concentration. 

Various regression model then were calculated over the 

measured-Rrs(λ)  values to obtain the estimated-TSS 

concentration. The regression model for TSS and the estimated-

TSS concentration were shown in Table 2 and 3.  

  

Some acceptable determination coefficient (R2) which value 

higher than 0.5 showed in the ratio of Rrs(λ2)/Rrs(λ3), 

Rrs(λ2)/Rrs(λ4) and Rrs(λ1)/Rrs(λ4). The highest R2 showed in 

the ratio of Rrs(λ2)/Rrs(λ3) which value of 0.795, while the 

lowest R2 showed in the ration of Rrs(λ1)/Rrs(λ5), which was 

0.001. This model then used to calculate the estimated-TSS 

concentration.   

  

To assess the performance of estimated-TSS that was calculated 

based on combination of three regression models and three 

independent variables, we compared that value to the measured 

one as shown in Table 3. The calculated  RMSE,  NMAE and R 

were presented in Table 4. RMSE and NMAE were used to 

assess the accuracy of the data between the measured and 

estimated TSS. While R2 was used for assessing its correlation. 

According to Jaelani, Setiawan, and Matsushita (2015), the 

minimum requirement of NMAE value to extract the water 

quality parameters from remote sensing data is below of 30%. 

The R2 values ranged between 0.496 to 0.709, with the highest 

accuracy produced by regression model using ratio band of 

Rrs(λ2)/Rrs(λ4) as an independent variable (Fig. 4).   
  

Figure 2.  Measured - Rrs (λ)     

  

Figure 3. Estimated - Rrs (λ)   
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This algorithm then be applied to the Landsat-8 image to obtain 
the estimated TSS values. Those estimated values with the 
highest R2 then be validated to the measured one as shown in 
Fig. 5.   

Regression model  Rrs(λ1)  Rrs(λ2)  Rrs(λ3)  Rrs(λ4)  Rrs(λ5)  

TSS = a(xi) + b  0.001  0.003  0.075  0.107  0.006  

TSS = a*log(xi) + b  0.002  0.004  0.069  0.104  0.001  

Regression model  Rrs(λ4)/Rrs(λ5)  Rrs(λ3)/ 

Rrs(λ4)  

Rrs(λ3)/Rrs(λ5)  Rrs(λ2)/Rrs(λ3)  Rrs(λ2)/Rrs(λ4)  

TSS = a(xi/xj) + b  0.056  0.204  0.038  0.722  0.664  

TSS = a*log(xi/xj) + b  0.072  0.192  0.025  0.733  0.628  

TSS = a*(log(xi)/log(xj)) + 

b  

0.141  0.202  0.041  0.794  0.696  

Regression model  Rrs(λ2)/Rrs(λ5)  Rrs(λ1)/Rrs(λ2)  Rrs(λ1)/Rrs(λ3)  Rrs(λ1)/Rrs(λ4)  Rrs(λ1)/Rrs(λ5)  

TSS = a(xi/xj) + b  0.025  0.156  0.429  0.746  0.011  

TSS = a*log(xi/xj) + b  0.006  0.142  0.389  0.736  0.001  

TSS = a*(log(xi)/log(xj)) + 

b  

0.002  0.163  0.465  0.738  0.002  

Table 2. Regression model combination for TSS with R2  

  3 
Estimated TSS (g/m )  

Station  Rrs(λ2)/Rrs(λ3)  
R=0,722  0,733  0,794  

0,664  

Rrs(λ2)/ Rrs(λ4)  
0,628  0,696  

R 
0,746  

rs(λ1) / 

Rrs(λ4)  
0,736  0,738  

TSS (g/m3)  

ST 1  14.80  15.22  14.67  9.25  1.79  12.53  9.85  0.90  0.48  14  
ST 2  13.47  12.32  13.65  11.46  4.63  13.29  11.42  0.90  0.48  13  
ST 3  13.28  11.91  13.53  -4.55  -9.51  9.48  -1.90  0.86  0.47  13  
ST 4  15.45  16.70  15.26  13.83  8.45  14.46  13.68  0.92  0.48  15  
ST 5  15.17  16.04  14.97  10.09  2.79  12.77  10.82  0.90  0.48  14  
ST 6  15.79  17.52  15.62  14.43  9.56  14.78  14.54  0.92  0.48  16  
ST 7  15.06  15.80  15.02  15.96  12.87  15.80  15.37  0.93  0.48  18  
ST 8  15.87  17.71  15.79  15.36  11.48  15.36  15.12  0.93  0.48  17  
ST 9  16.57  19.45  16.49  15.02  10.75  15.15  14.92  0.93  0.48  16  

Measured  
  

  

  

  

  Table 3. The estimated-TSS for specific independent variable  

Regression Model  
RMSE(g/m3)   NMAE 

(%)  
  

R2   

Rrs(λ2)  
Rrs(λ3)  

Rrs(λ2)  
Rrs(λ4)  

Rrs(λ1)  
Rrs(λ4)  

Rrs(λ2)  
Rrs(λ3)  

Rrs(λ2)  
Rrs(λ4)  

Rrs(λ1)  
Rrs(λ4)  

Rrs(λ2)  
Rrs(λ3)  

Rrs(λ2)  
Rrs(λ4)  

Rrs(λ1)  
Rrs(λ4)  

TSS = a(xi/xj) + b  1.191  6.325  5.451  5.622  28.164  25.506  0.496  0.501  0.505  
TSS = a*log(xi/xj) + b  1.817  10.646  14.295  10.627  64.724  93.915  0.488  0.681  0.679  
TSS = a*(log(xi)/log(xj)) + 

b  
1.196  1.705  14.727  5.729  9.667  96.797  0.518  0.709  0.703  

Table 4. The RMSE, NMAE and R2 as indicator of algorithm performance  
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Figure 4.Regression model for TSS with independent 

variable of band-ratio of Rrs(λ2)/Rrs(λ4)  

 

Figure 5. Estimated vs. Measured TSS  

Considering the results showed in Fig. 5, the algorithm used to 

estimates the TSS values over the Landsat-8 image can now be 

arranged following the formula below :  

  (8)  

(9)  

Then,  

  (10)  

The estimated-TSS concentration from Landsat-8 images was 

presented as well as the measured concentration in Table  

5.   

 

Table 5. The value of estimated and measured-TSS  
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3.3 Developed Algorithm for Estimating Chlorophyll-a  

The Chlorophyll-a estimation from spectra data follow the same 
step of  TSS. The modeling was made using regression models 
with single band and band-ratio of Landsat were  

 

Figure 6. Regression model for Chl-a with independent 

variable of band-ratio of Rrs(λ2)/Rrs(λ4)  

Station  
Estimated Chl-a  

(mg/m3)   

Measured Chl-a 

(mg/m3 )   

St.1  248.8729   278   

St.2  263.228   286   

St.3  238.546   298   

St.4  295.538   280   

St.5  252.5938   254   

St.6  306.2124   386   

St.7  346.6274   459   

St.8  328.1409   327   

presented in Table 6.   

Regression model  

  R2    

     

 Rrs(λ1)  Rrs(λ2)  Rrs(λ3)  Rrs(λ4)  Rrs(λ5)  

Chl = ax + b  0.017  0.048  0.172  0.108  0.052  

Chl = ax2 – bx + c  0.036  0.059  0.182  0.199  0.111  

Chl = a*log(x) + b  0.014  0.046  0.151  0.183  0.019  

Chl = a*( log(x) )2 – b*log(x)  + c  0.032  0.046  0.151  0.184  0.051  

Regression model  

  R2    

     

 Rrs(λ4)/Rrs(λ5)  Rrs(λ3)/ Rrs(λ4)  Rrs(λ3)/ Rrs(λ5)  Rrs(λ2)/Rrs(λ3)  Rrs(λ2)/Rrs(λ4)  

Chl = a*(xi/xj)+ b  0.002  0.231  0  0.491  0.564  

Chl = a*(xi/xj)2 – b*(xi/xj) + c  0.006  0.232  0.009  0.524  0.593  

Chl = a*log(xi/xj)+ b  0.005  0.231  0.001  0.500  0.576  

Chl = a*( log(xi/xj))2 – b*(log(xi/xj)) + c  0.021  0.232  0.007  0.529  0.578  

Chl = a*(log(xi)/log(xj))+ b  0.031  0.219  0.001  0.572  0.605  

Chl = a*(log(xi)/log(xj))2 – b*(log(xi)/log(xj))+ 

c  

0.056  0.236  0.030  0.634  0.615  

Regression model  

  R2    

Rrs(λ2)/ 

Rrs(λ5)  

Rrs(λ1) / 

Rrs(λ2)  

Rrs(λ1) / 

Rrs(λ3)  

Rrs(λ1) / 

Rrs(λ4)  

Rrs(λ1) / 

Rrs(λ5)  

Chl = a(xi/xj) + b  0.001  0.076  0.269  0.566  0.007  

Chl = a*( xi/xj)2 – b*( xi/xj )  + c  0.047  0.419  0.429  0.584  0.073  

Chl = a*log(xi/xj) + b   0.009  0.060  0.224  0.573  0.023  

Chl = a*( log(xi/xj))2 – b*(log(xi/xj))  + c  0.048  0.444  0.496  0.575  0.077  

Chl = a*(log(xi)/log(xj)) + b  0.015  0.083  0.295  0.566  0.049  

Chl = a*(log(xi)/log(xj))2 – b*(log(xi)/log(xj))+ 

c  

0.074  0.453  0.499  0.569  0.106  

Table 6.  Regression model combination for Chl-a with R2  
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St.9  
319.9305   

332   

Table 7. The value of estimated and measured-Chl-a  

 

Figure 7. Estimated vs. Measured Chl-a  

Figure 6 showed the regression model for Chl-a concentration 

estimation that was built using band-ratio of  Rrs(λ2)/Rrs(λ4)  

an independent variable. This model had a highest correlation 

between measured-Chl and remote sensing reflectance with R2 

of 0.615. The summary of developed algorithm as follow:  

  (11)  

  (12)  

  

Therefore, the above algorithm was used to calculate the 

estimated-Chl-a concentration from Landsat-8 image 

reflectance. The calculation results of estimated concentration 

of chlorophyll-a in 9 stations shown in Table 7 and Fig. 7.   

4. CONCLUSION  

We developed a new algorithm for estimating TSS and Chl-a 

concentration that was applicable in small part of Indonesia 

water. For that purposes, We collected in-situ remote sensing 

reflectance, TSS and Chl-a concentration  in 9 stations 

surrounding the Poteran islands as well as Landsat 8 data on the 

same acquisition time of April 22, 2015.   

The  regression  model  for  estimating 

 TSS  (  

) produced high accuracy with  

determination coefficient (R2), NMAE and RMSE of 0.709; 

9.67%; and 1.705 g/m3 respectively.  Whereas, Chl-a retrieval 

 algorithm  

)  

produced R2 of 0.579; NMAE of 10.40%; and RMSE of 51.946 

mg/m3. By implementing these algorithms to Landsat 8 image, 

the estimated water quality parameters over Poteran island 

water ranged from 9.480 to 15.801 g/m3 and 238.546 to 346.627 

mg/m3 for TSS and Chl-a respectively.  

In general, the developed algorithm for estimating TSS and Chl-

a concentration produced acceptable accuracy (NMAE < 30%), 

thus extracting water information from satellite images using 

these algorithms are applicable. Whereas, the low correlation 

between measured and estimated-Chl-a concentration 

(R2=0.597) was caused not only by performance of the 

developed-Chl-a estimation algorithm but also the accuracy of 

atmospheric correction algorithm by 6SV.  

To assess the implementation in wider area, in short future, we 

are going to validate the developed algorithms using in situ data 

collected in different water area in Indonesia.   
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